Why Airliners Fly So Close Above and Below Each Other

Feb 25, 2019

This post contains references to products from one or more of our advertisers. We may receive compensation when you click on links to those products. Terms apply to the offers listed on this page. For an explanation of our Advertising Policy, visit this page.

The gif below appears to be filmed by a pilot in flight. They knew from their displays that another plane was about to cross in the opposite direction above them, and were ready with a camera. The gif provides an astounding example of the vertical separation between commercial airliners high in the sky and the closing speeds at which they operate.

Just watch, and if you’re like me, watch it on repeat.

It may come as a surprise, but airliners jetting across the sky are separated vertically by as little as 1,000 feet. And that’s perfectly normal.

Here, the aircraft filming is behind and below the higher aircraft traveling in the same direction. 2,000 feet separates the two vertically. Jetting in the opposite direction is another airliner, which is 1,000 feet below the higher jet and 1,000 feet above the jet with the the camera — this happened in a “non-critical phase of flight,” as pilots typically say. During takeoff or landing, for example, vertical separations would be larger.

Aircraft are separated vertically and horizontally in the so-called “flight levels,” or altitudes above 18,000 feet, by air traffic control — that is to say, ATC will instruct the aircraft their heading and altitude.

Here’s how it works.

How It Works…

All passenger planes will cruise eastbound at so-called “odd” flight levels; if they’re heading east, the aircraft will fly at 33,000 feet (which pilots and air traffic control will refer to as FL330) or 35,000 feet (FL350), in increments of 2,000 feet. A westbound flight will cruise at “even” numbered flight levels — FL320 or FL340 — again in increments of 2,000 feet.

Nowadays, nations that are members of ICAO, the international organization that governs civil aviation, have implemented so-called reduced vertical separation minima (RVSM) above 29,000 feet and below 41,000 feet. With RVSM, one aircraft can be at FL320 and another at FL330, heading in opposite directions.

It hasn’t always been this way. In fact, it really only took hold in the mid-2000s.

From the 1940s, aircraft above 29,000 feet were separated by 2,000 feet of vertical space as described above. The reason? Altimeters — instruments that indicate altitude to the pilots based on a system that measures the pressure in the air surrounding the aircraft — simply are not as accurate as pressure decreases and the aircraft gains altitude. In the flight levels, above 18,000 feet, the altitude is set by pilots at a standard barometric pressure of 29.92 so as to create a standard reference for all aircraft and avoid any variation. Below the flight levels, air traffic control will report the specific pressure in an area so that altitude readings will be standardized across aircraft in the airspace.

The change came about when computers started to play a larger role on the flight deck. Air Data Computers (ADCs) take the readings from the various instruments in the so-called “Pitot-static” system, whichmeasures air pressure and has improved over time, and determine the plane’s airspeed and altitude with much more precision than a reading from a single instrument. In addition, GPS is used for calibration of the ADC data and to comply with the RVSM capability monitoring of aircraft, but is not required as part of the system.

… and How It Saves Fuel

Airlines will try to optimize their flight paths to take advantage of the winds aloft, and reducing the vertical separation between aircraft allows for more flexibility. Indeed, there is a fuel-burn penalty of about 1 percent for each 1000 ft below optimum cruise altitude, according to ICAO. (Jet engines are more efficient at higher altitudes.) That’s a lot of fuel and a lot of money. In addition, RVSM doubles the number of aircraft that can use the flight levels, and with some 6 percent growth in the number of flights between 2004 and 2020 according to ICAO, more highways were needed.

It wasn’t until the fuel crisis in the 1970s that airlines pressured ICAO to consider reducing the vertical separation in the sky.

Like anything aviation-related with a safety component, it took a long time for progress to be made. An ICAO panel began work in 1982, reporting in 1988 that reduced separation was technically feasible. It wasn’t until 1997 that RVSM was first implemented, and it took until 2005 for it to become standard in North America and on Pacific and Atlantic routes. The project paid off, however. Within five years of implementation of RVSM, ICAO calculated fuel savings alone of some $200 million per year.

Aircraft are required to maintain certain approved instrumentation to take advantage of this reduced separation, as well as use approved autopilot systems.

And what about the impressive rate of closure between the two planes going in opposite directions in the gif above?

High school physics tells us that to calculate the closing speed of two objects, you sum the two speeds. If one aircraft is traveling, say, 801 mph over the ground (with a hefty tailwind), and the other aircraft is traveling, say 350 mph over the ground (with the opposite headwind), the closing speed is a whopping 1,151 mph. If the two aircraft are five nautical miles apart, they will meet in around 17 seconds.

The good news! is that they are separated by 1,000 feet.

Mike Arnot is the founder of Boarding Pass NYC, a New York-based travel brand, and a private pilot.

Featured image by Steve Christo/Corbis via Getty Images

Delta SkyMiles® Platinum American Express Card

Earn 90,000 bonus miles and 10,000 Medallion® Qualification Miles (MQMs) after you spend $3,000 in purchases on your new card in the first three months of card membership. Offer ends 11/10/2021.

With Status Boost™, earn 10,000 Medallion Qualification Miles (MQMs) after you spend $25,000 in purchases on your Card in a calendar year, up to two times per year getting you closer to Medallion Status. Earn 3X Miles on Delta purchases and purchases made directly with hotels, 2X Miles at restaurants and at U.S. supermarkets and earn 1X Mile on all other eligible purchases. Terms Apply.

Apply Now
More Things to Know
  • Limited Time Offer: Earn 90,000 Bonus Miles and 10,000 Medallion® Qualification Miles (MQMs) after you spend $3,000 in purchases on your new Card in your first 3 months. Offer expires 11/10/2021.
  • Earn up to 20,000 Medallion® Qualification Miles (MQMs) with Status Boost® per year. After you spend $25,000 in purchases on your Card in a calendar year, you can earn 10,000 MQMs two times per year, getting you closer to Medallion® Status. MQMs are used to determine Medallion® Status and are different than miles you earn toward flights.
  • Earn 3X Miles on Delta purchases and purchases made directly with hotels.
  • Earn 2X Miles at restaurants worldwide, including takeout and delivery and at U.S. supermarkets.
  • Earn 1X Miles on all other eligible purchases.
  • Receive a Domestic Main Cabin round-trip companion certificate each year upon renewal of your Card. *Payment of the government imposed taxes and fees of no more than $75 for roundtrip domestic flights (for itineraries with up to four flight segments) is required. Baggage charges and other restrictions apply. See terms and conditions for details.
  • Enjoy your first checked bag free on Delta flights.
  • Fee Credit for Global Entry or TSA Pre✓®.
  • Enjoy an exclusive rate of $39 per person per visit to enter the Delta Sky Club® for you and up to two guests when traveling on a Delta flight.
  • No Foreign Transaction Fees.
  • $250 Annual Fee.
  • Terms Apply.
  • See Rates & Fees
Regular APR
15.74%-24.74% Variable
Annual Fee
$250
Balance Transfer Fee
N/A
Recommended Credit
Excellent/Good
Terms and restrictions apply. See rates & fees.

Editorial Disclaimer: Opinions expressed here are the author’s alone, not those of any bank, credit card issuer, airlines or hotel chain, and have not been reviewed, approved or otherwise endorsed by any of these entities.

Disclaimer: The responses below are not provided or commissioned by the bank advertiser. Responses have not been reviewed, approved or otherwise endorsed by the bank advertiser. It is not the bank advertiser’s responsibility to ensure all posts and/or questions are answered.